脳疾患におけるEPI-FLAIR
-高速SE法T2強調画像、高速FLAIRとの比較-

的場 宗孝 利波 久雄 横田 啓
緒部浩一郎 興村 哲郎 山本 達

金沢医科大学放射線医学教室

Echo-planar FLAIR Imaging in Patients with Brain Disorders: Comparative studies with Turbo-SE T2WI and Turbo-FLAIR

Munetaka Matoba, Hisao Tonami, Hajime Yokota, Kcuichiro Ayabe, Tetsuro Okinura and Itaru Yamanoto

Fluid-attenuated inversion recovery (FLAIR) imaging is a technique that produces heavily T2-weighted CSF-culled images by applying an inversion pulse followed by a long inversion time (TI) to a long echo time (TE) readout. With nulling of the CSF, a tissue abnormality usually becomes the brightest object in the image, thereby improving lesion detection in the brain. The FLAIR technique is also easily adapted to echo-planar imaging (EPI), the most rapid MR imaging technique available. We examined EPI-FLAIR imaging in patients with brain disorders and compared the results with those of turbo-FLAIR and turbo SE T2-weighted imaging.

MR imaging was performed on a 1.5 T imager in 29 patients with cerebral infarction and 2 patients with multiple sclerosis. The turbo-SE T2-weighted sequence parameters used were; TR/TE = 4000ms/99ms, total scan time = 2min 12sec. Turbo-FLAIR sequence parameters were TR/TE/TI = 9000ms/115ms/2200ms, total scan time = 4min 3sec. EPI-FLAIR sequence parameters were TR/TE = 60ms/2200ms, total scan time = 4.38sec. EPI-FLAIR images were compared quantitatively and qualitatively with both turbo-FLAIR and turbo-SE T2-weighted images.

In the quantitative comparisons of EPI-FLAIR images with turbo-FLAIR and turbo-SE T2-weighted images, lesion-to-white matter contrast and the C/N ratio of EPI-FLAIR images were found to be significantly higher or to both turbo-FLAIR and turbo-SE T2-weighted images (P < 0.001). In the qualitative comparisons, the lesion detection and conspicuity of EPI-FLAIR images were inferior to those of turbo-FLAIR and turbo-SE T2-weighted images. EPI-FLAIR should not replace turbo-FLAIR.

Research Code No. : 533.9
Key words : MR imaging, Pulse sequence, EPI, Brain

Received May, 8, 1997, revision accepted Dec. 0, 1997
Department of Radiology, Kanazawa Medical University

はじめに

Fluid-attenuated inversion recovery (FLAIR) imaging (以下、FLAIR)とは、脳脊髄液の信号を減衰的に抑制したT2強調像であり、脳梗塞や多発性硬化症のように病巣が脳脊髄液と同等に高信号として描出されるT2 imaging (以下、SE)のT2強調像（T2-WI）よりも、脳脊髄液に接する脳室や脳溝脳溝の病変検出に優れている1,2). しかし、従来のFLAIR法は撮像時間が長く、検査枚数に制限があったが、最近、高速inversion recovery法の臨床導入により従来のFLAIR法に比べて撮像時間が短縮され、検査枚数も十分な高速FLAIR法（turbo-FLAIR、以下T-FLAIR）の撮像が可能となった。さらに、T-FLAIR法の画質も向上し、SE法あるいは高速SE法(turbo-SE、以下 TSE)のPD-WI、T2-WIとの比較において、病変検出能、明瞭度ともに優れているとの報告も認められている3,4).

一方、echo-planar imaging (以下、EPI)は、他のパルスシーケンスよりも時間分解能に優れた超高速MRIの手法であり5). 現在、多くの領域において臨床応用が進められている。そして、EPIとFLAIR法を組み合わせることによりT-FLAIR法よりもさらに時間分解能にすぐれたEPI-FLAIRの撮像が可能となった。

今回、われわれは、TSE-T2WIあるいはT-FLAIR法にて病変が著明にされた脳梗塞や多発性硬化症の患者に対しEPI-FLAIRを撮像し、EPI-FLAIR法の病変検出能、明瞭度を定量的にTSE-T2WIおよびT-FLAIR法と比較し、EPI-FLAIRの臨床的価値について検討した。

対象および方法

対象は31例で、全例にてTSE-T2WI、T-FLAIRおよびEPI-FLAIRが撮像された。内訳は、脳梗塞が男性17例、女性14例で平均年齢67.5歳であり、多発性硬化症が男性1例、女性：5例で平均年齢43.4歳であった。

撮像装置は、Magnetom Vision 1.5T(Siernens)を用いた。
撮像条件は、TSE-T2WIが、TR=4000ms/TE/99ms/2(TE/effective TE/excitations), ETL:11, FOV:165×220mmあるいは173× 220mm, matrix:176×256, T-FLAIRが、9000ms/2200ms/
EPI-FLAIRとTSE-T2WIおよびT-FLAIRとの比較は、定量的評価と定性的評価にて行なった。定量的評価は、各症例においてTSE-T2WI、T-FLAIR、EPI-FLAIRを同一スライスの同一病変にROIを設定し病変の信号強度を測定した。なお、複数個の病変がある場合は、主な病変を選択し信号強度の測定を行った。さらに、同様に、病変近傍の白質、脳脊髄液、イメージノイズの信号強度の測定も行った。そして、得られた各信号強度より(i)lesion to white matter contrast = lesion - Swhite matter/Swhite matter (ii) lesion to CSF contrast = lesion - SC SF/SCSF (iii) lesion to white matter contrast to noise ratio (C/N) = lesion - Swhite matter/S.D. of image noise (iv) lesion to CSF C/N = lesion - SC SF/S.D. of image noise (lesion: 病変の信号強度、Swhite matter: 白質の信号強度、SCSF: 脳脊髄液の信号強度)をそれぞれ算出し、TSE-T2WI、T-FLAIR、EPI-FLAIRの間で比較検定を行った。検定には、t検定を用いた。

1. 定量的評価
Table 1にそれぞれのパルスシーケンスでの信号強度測定によるlesion contrastおよびC/Nの平均値(mean ± S.D.)とその検定の結果を示す。lesion to white matter contrastについては、EPI-FLAIRの値が0.33±0.17であったのに対し、TSE-T2WIが0.66±0.36、T-FLAIRが0.76±0.33でありEPI-FLAIRの値はそれらの値の約1/2で、検定の結果も有意に低値であった(p < 0.001)。また、TSE-T2WIとT-FLAIRとの間に有意差が認められた(p < 0.05)。lesion to CSF contrastについては、EPI-FLAIRの値が3.75±6.25に対し、TSE-T2WIが0.46±1.09であり有意差が認められた(p < 0.001)が、T-FLAIRとの間には有意差は認められなかった。 lesion to white matter C/Nについては、EPI-FLAIRの値が11.56±6.39に対し、TSE-T2WIが32.48±19.14、T-FLAIRが18.93±8.22でありEPI-FLAIRの値はそれぞれの値と比較して有意に

<table>
<thead>
<tr>
<th>Ratio</th>
<th>TSE-T2WI</th>
<th>T-FLAIR</th>
<th>EPI-FLAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>lesion to white matter contrast</td>
<td>0.66</td>
<td>0.76</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.33)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>lesion to CSF contrast</td>
<td>0.46</td>
<td>3.68</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(1.46)</td>
<td>(6.25)</td>
</tr>
<tr>
<td>lesion to white matter C/N</td>
<td>32.48</td>
<td>8.93</td>
<td>11.56</td>
</tr>
<tr>
<td></td>
<td>(19.14)</td>
<td>(8.22)</td>
<td>(6.39)</td>
</tr>
<tr>
<td>lesion to CSF C/N</td>
<td>69.4C</td>
<td>35.49</td>
<td>35.5C</td>
</tr>
<tr>
<td></td>
<td>(19.22)</td>
<td>(9.94)</td>
<td>(15.67)</td>
</tr>
</tbody>
</table>

*: 0.001 < P < 0.05 **: P < 0.001
Table 2 Comparative lesion conspicuity and lesion detection between T2-weighted TSE and echo-planar FLAIR images.

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Radiologist</th>
<th>TSE-T2 WI superior</th>
<th>TSE-T2 WI = EPI-FLAIR</th>
<th>EPI-FLAIR superior</th>
<th>TSE-T2 WI superior</th>
<th>TSE-T2 WI = EPI-FLAIR</th>
<th>EPI-FLAIR superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>white matter</td>
<td>1</td>
<td>12</td>
<td>14</td>
<td>2</td>
<td>5</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>(n = 28)</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>Average</td>
<td>12.0(42.5)</td>
<td>13.7(48.9)</td>
<td>2.3(8.2)</td>
<td>5.0(17.5)</td>
<td>18.7(66.8)</td>
<td>4.3(15.4)</td>
<td></td>
</tr>
<tr>
<td>basal ganglia</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(n = 16)</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>15.0(33.8)</td>
<td>1.0(5.2)</td>
<td>0</td>
<td>10.7(66.9)</td>
<td>5.3(33.1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>brain stem</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(n = 6)</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>5.7(94.4)</td>
<td>0.3(5.6)</td>
<td>0</td>
<td>5.0(83.2)</td>
<td>1.0(16.7)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are percentages.

Table 3 Comparative lesion conspicuity and lesion detection between turbo-FLAIR and echo-planar FLAIR images.

<table>
<thead>
<tr>
<th>Lesion</th>
<th>Radiologist</th>
<th>T-FLAIR superior</th>
<th>T-FLAIR = EPI-FLAIR</th>
<th>EPI-FLAIR superior</th>
<th>T-FLAIR superior</th>
<th>T-FLAIR = EPI-FLAIR</th>
<th>EPI-FLAIR superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>white matter</td>
<td>1</td>
<td>22</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>(n = 28)</td>
<td>2</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>11</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>25.6(89.3)</td>
<td>3.0(10.7)</td>
<td>0</td>
<td>8.6(28.6)</td>
<td>20.0(71.4)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>basal ganglia</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(n = 16)</td>
<td>2</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>11</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>14.3(89.6)</td>
<td>1.7(10.4)</td>
<td>0</td>
<td>9.6(53.3)</td>
<td>7.0(43.7)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>brain stem</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(n = 6)</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>3.7(61.1)</td>
<td>2.3(38.6)</td>
<td>0</td>
<td>3.7(61.1)</td>
<td>2.3(38.9)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are percentages.

低値であった (P < 0.301)。また、TSE-T2WIとT-FLAIRとの間にも有意差が認められた (P < 0.001)。lesion to CSF/Nについては、EPI-FLAIRの値が33.5±15.67に対し、TSE-T2WIが69.40±19.22であり有意差が認められた (P < 0.01)が、T-FLAIRとの間には有意差は認められなかった。

2. 定性的評価

TSE-T2WIあるいはT-FLAIRにて指摘された病巣を部位別に分類した結果、皮質下白質および顕脈白質に病巣が見られたもの28症例、基底核に病巣が見られたもの16症例、脳幹に病巣が見られたもの6症例で、上記3部位に加えて深部白質脳病巣については出血性梗塞を3例認めた。また、基底核、前庭部病巣についてはTSE-T2WIでは全例高信号を呈したが、T-FLAIRでは必ずしも高信号ではなく等～低信号を呈した病巣も見られた。Table 2に3人の放射線技師によるTSE-T2WIとEPI-FLAIRの病変明瞭度、検出能についての判定を病変部位別に比較した結果を示す。また、Table 3には、T-FLAIRとEPI-FLAIRとの比較の結果を示す。

皮質下白質および深部白質病巣(Fig.1, 2)において、EPI-FLAIRとTSE-T2WIとの比較の結果、病変明瞭度ではEPI-FLAIRとTSE-T2WIが同等と判定された症例が13.7症例 (48.9%)、EPI-FLAIRがTSE-T2WIよりも優れていると判定された症例が2.3症例 (8.2%) あった。病変検出能では

平成10年3月25日
EPI-FLAIRとTSE-T2WIがほぼ同等と判定された症例は18.7％であり、EPI-FLAIRがTSE-T2WIよりも優れていたと判定された症例は4.3％（15.4％）あった。一方、EPI-FLAIRとT-FLAIRの比較の結果、病変明瞭度ではT-FLAIRの方が優れていると判定されたものが25症例（39.3％）あり、両者ほぼ同等と判定されたものが3症例（10.7％）で、EPI-FLAIRの方が優れていると判定された症例は認めなかった。病変検出能ではT-FLAIRとEPI-FLAIRがほぼ同等と判定されたものが20症例（71.4％）あり、T-FLAIRの方が優れていると判定されたものが8症例（28.6％）、EPI-FLAIRの方が優れていると判定された症例は認めなかった。出血性梗塞においては、EPI-FLAIRではsusceptibility artifactの影響で病変検出能の劣化が見られた症例があった（Fig.3）。また、頭蓋底に隣接した病変においてもsusceptibility artifactのため病変検出能の劣化が見られた（Fig.4）。

基底核病変においては、EPI-FLAIRとTSE-T2WIの比較の結果、病変明瞭度ではTSE-T2WIの方が優れていると判定されたものが15症例（33.3％）あり、両者ほぼ同等と判定されたものが1症例（6.2％）で、EPI-FLAIRの方が優れていると判定された症例は認めなかった。また、病変検出能でもEPI-FLAIRの方が優れていると判定された症例はなく、TSE-T2WIの方が優れていると判定されたものが10.7症例（65.9

Fig.1 A 55 year-old man with multiple cerebral infarctions. Axial T2-weighted TSE (A), turbo-FLAIR (B) and echo-planar FLAIR (C) images. The T2-weighted image shows subtle lesions of subcortical white matter in bilateral frontal lobes and right parietal lobe (arrows). These lesions are more conspicuous on the turbo-FLAIR and echo-planar FLAIR images (arrows).
%）両者ほぼ同等と判定されたものが5.3症例（33.1％）であった。一方、EPI-FLAIRとT-FLAIRとの比較の結果においても、病変明瞭度、検出能でEPI-FLAIRが優れていると判定された症例はなく、病変明瞭度ではT-FLAIRは優れていると判定されたものが4.3症例（89.6％）、EPI-FLAIRとT-FLAIRがほぼ同等と判定されたものが1.7症例（10.4％）であった。病変検出能ではT-FLAIRが優れていたと判定されたものが9症例（56.3％）、ほぼ同等と判定されたものが7症例（43.7％）であった。

脳幹部病変においては、EPI-FLAIRとTSE-T2WIの比較の結果、病変明瞭度ではTSE-T2WIの方が優れていると判定されたものが5.7症例（94.4％）で、EPI-FLAIRの方が優れていると判定された症例は認めなかった。また、病変検出能についてもほぼ同等な結果であった。一方、T-FLAIRとの比較においても病変明瞭度、検出能でEPI-FLAIRの方が優れていると判定された症例はなく、ともにT-FLAIRの方が優れていた。

考 察

従来のSE法T2-WIでは脳脊髄液は高信号となり、同等に高信号を呈する脳室や脳溝周辺の硬塞癌や脱摘果が脳脊髄液
液のpartial volume averagingなどで評価が困難となる。一方、FLAIR法では脳脊髄液が低信号として描画されることより、これらの病変の検出能、明瞭度が向上するとといわれている10,11。さらに、FLAIR法は様々な脳葉病変の検出、描画にも優れている12。また、急性クロモ膜下出血の診断にも有用と言われている8。しかし、前述した通り従来のFLAIR法に撮像時間が長く、撮像枚数にも制限があったが、最近ではRARE法（rapid acquisition with rea xation enhancement）をFLAIRに応用したT-FLAIR法の登場によって撮像時間の短縮が可能となり臨床的にも手軽にFLAIRの撮像が行われるようになった13,14。T-FLAIRとSEあるいはTSEのPD-WI、T2-WIとの病変検出能、明瞭度を定性的、定量的に評価比較した報告では、T-FLAIRが病変検出能、明瞭度においてPD-WI、T2-WIよりも優れていたが15。モニター孔周囲や脳底動脈領域では脳脊髄液の流入効果によるflow artifacが発生し、また、皮質と白質のコントラストが低いため解剖的評価に劣るなどの欠点も報告されている16,17。逆って、現現ではT-FLAIRは、病変の検出能、明瞭度に優れていているが、T2-WI
とは相補的な関係にあるものと思われる。

EPIは、最も時間分解能に優れた超高速MRIの手法であり現在臨床応用が進められている。そして、EPIとFLAIRの手法を組み合わせることにより時間分解能に優れたFLAIRの撮像が可能となった。今回、われわれが用いたEPI-FLAIRの撮像条件：TE/T1 = 60 ms/2200 msで、撮像時間は4.38秒であった。T-FLAIRの撮像時間が4分5秒であったことを考えると約1/60の撮像時間である。しかし、EPIではS/Nが劣ること、susceptibility artifactの影響を受けやすうことや、EPI特有のアーチファクトであるN/2などにより画像の劣化が懸念された。そこで、われわれはEPI-FLAIRとTSE-T2WIとT-FLAIRの画質を比較しEPI-FLAIRの病変検出能、明瞭度を検討した。そして、EPI-FLAIRの臨床的価値について検討した。なお、今回の検討では、EPI-FLAIRとTSE-FDWIとの比較は行わなかったが、TSE-PDWIの場合TSEの特徴的なアーチファクトであるblurring, pseudo-edge enhancementによる画質の劣化が言われているため、TSE法ではT2WIとの比較のみを行った。

検討の結果、信号強度測定による定量的評価では、EPI-FLAIRはlesion to white matter contrastおよびC/Nはともに
TSE-T2WI、T-FLAIRよりも有意に劣っていた。また、定性的評価でもEPI-FLAIRとT-FLAIRの比較では、病変明瞭度、検出能でEPI-FLAIRはT-FLAIRに劣っていた。しかし、TSE-T2WIとの病変明瞭度の比較では、皮質下白質および深部白質病変についてはEPI-FLAIRとTSE-T2WIのほぼ同等と判定されたものが87.9%、EPI-FLAIRがT2WIよりも優れていた判定されたものが8.2%見られた。これは、定量的評価で、EPI-FLAIRのlesion to CSF contrastおよびCNの値がTSE-T2WIよりも有意に高値であったように脳室や脳室内の脳脊髄液の信号がT-FLAIR等同に抑制され脳脊髄液等の高信号を呈する病変部の明瞭度が上がったためと思われる。従って、病変検出能についても一部の症例では反応下白質および深部白質病変ではEPI-FLAIRはTSE-T2WIよりも優れていた。基底核病変については、EPI-FLAIRは病変明瞭度、検出能の両者でTSE-T2WIおよびT-FLAIRよりも明らかに劣っていた。これは主にSNの発現に起因すると思われるが、それでもなく、脳室化した小核病変はT-FLAIRで脳室周囲同様に高信号を呈するがFLAIRでは病変の信号が抑制され低信号となることより指摘しきろくなってしまうこと45、また、single shot EPI-FLAIRでは白質基質液や1620皮質基質液の内包後線後劣が高信号に抽出されることがより病変明瞭度、検出能が劣る原因と考えられた。脳幹部病変についてもEPI-FLAIRはTSE-T2WI、T-FLAIRよりも劣っており、特に、脳底に近い脳幹部下ではsusceptibility artifactの影響が強く信号の脱落や画像の歪みが目立っていた。今回、われわれは、出血変化像のEPI-FLAIRを5例経験したが、いずれもsusceptibility artifactのため信号低下や画像の歪みのため画像の低下が見られた。しかし、EPI-FLAIRは出血によるsusceptibility effectに効果で、出血がアーチファクトの原因になるという等級を活かすことにより脳血管奇形や腫瘍内出血を銳敏に評価することが可能であり、今後の研究課題の一つになるものと予想された。

今回の検討からEPI-FLAIRは、時間分解能に優れたF..FLAIR法であるが、画像においてはT-FLAIR、TSE-T2WIに劣っており、TSE-T2WIの権利的な役割としてのT-FLAIRに寄せてかける程の臨床的価値はないと考えられた。しかし、EPI-FLAIRでも画像が悪いに皮質下白質および深部白質病変の検出はある程度可能であり、本体の激しい患者で満足なFLAIR画像が得られない症例等においてはEPI-FLAIRの検出を追加してみて価値はあるように思えた。

結 論
EPI-FLAIRは、時間分解能に優れているが、画像においてはT-FLAIR、TSE-T2WIよりも劣っており、T-FLAIRに取って変わる程の臨床的価値はないと考えられた。

文献
5) Alexander JA, Sheppard S, Davis PC, et al: Adjacent cerebrovascu-