関節軟骨への3D water-excitation magnetization transfer contrast MR画像の試み

吉岡 大1) Philipp Lang2) 池田耕太郎3) 新津 守1) 板井 優二1)

1)筑波大学臨床医学放射線科
2)Department of Radiology, Stanford University
3)筑波大学臨床医学系

はじめに

関節軟骨のMR画像として、さまざまな像法が提唱されているが、現在最も病変の敏感度、特異度の高い像法として、3D脂肪抑制T1強調gradient recalled echo (GRE)法と2D脂肪抑制T2またはプロトン密度強調fast spin echo (FSE)法が挙げられている2-3)。我々は関節軟骨を高信号、関節液を低信号に描出する像法で、逆に後者は関節軟骨を低信号から中間信号、関節液を高信号に描出する像法である。しかし、脂肪抑制T2またはプロトン密度強調FSE法の使用は、臨床では2D画像に限られており、細かな空間分解能が必要とする関節軟骨の診断には限界がある。また、本研究では、脂肪抑制T2またはプロトン密度強調画像同様のコントラストを生ずる新たな像法として、3D water-
excitation magnetization transfer contrast (MTC)画像をin vitroとin vivoで試み、その有用性についての検討を行った。

対象と方法

対象は、生後5か月のプラ3群の豚関節症のある正常ボランティア5人(男性3人、女性2人、28歳-45歳、平均年齢34.4歳)であった。プラ豚は1日後後で豚関節組織のみ分離して画像計測。正常ボランティアに対しては、インフォームド・コンセントを得て搬送を行った。使用MR装置は、1.5 T Gyroscan NT Inter(Tフィリップスメディカルシステムズ株式会社製)で、像法方法は、1-2-1 binomialパルスの3D water-excitation法(繰り返し時間/エコー時間/フィリップ角=23/14/20)で、on resonance MTCパルス(1-2-1パルスの有無で軟骨)、その他、その他の像法条件は、マトリックス数=155×512, zero fill interpolation使用、スライス厚=1.6mm, field of view (FOV)=140cm, 施設値数=2回、搬送時間=7分9秒であった。画像計測、ボランティアにおいては関節液が認められるスライスで、関節軟骨、関節液、半月板、骨端骨、脂肪の信号強度を測定し、同スライスのバックグラウンドノイズの標準偏差を測定した。各組織の信号強度をバックグラウンドノイズの標準偏差で割った値を信号/ノイズ比 (S/N) とし、関節液のS/Nと軟骨の
S/Nの差を関節液と軟骨のラテラル・径間比（C/N）とした。また、ブタに関しても関節液の代用として、生理食塩水を膝に固定して撮像を行い、各膝の内・外側頭の2か所で各組織のS/Nと生理食塩水-関節軟骨のC/Nを測定した。

次に、臨床応用例として、単純X線写真で変形性膝関節症として診断された2症例（女性2人、34歳および36歳）に対して、2D脂肪抑制ブロトン強調FSE画像（5043×17）と3D water-excitation MTC画像（281×40）のsagittal像を撮像した。2D脂肪抑制ブロトン強調FSE画像に、マトリックス256×512、スライス厚3mm、スライスギャップ0.3mm、FOV140mm、順番回数3回で、撮像時間は7分5秒であった。3D water-excitation MTC画像の他の撮像条件は、上記ブタ膝、正常ボランティアの撮像条件と同一であった。

MTCパルスの有無にかかわらず、water-excitation画像では、生理食塩水または関節液と関節軟骨のS/Nは、半月板、骨頭端面、脂肪に比べて高いS/Nを示し、生理食塩水と関節軟骨が高信号として検出された。MTCパルスを加えたwater-excitation画像の軟骨は、通常のwater-excitation画像の軟骨よりも有意に低いS/N（p<0.05）を示した。従って、MTCパルスを加えたwater-excitation画像では、関節液（または生理食塩水）と関節軟骨のC/Nは通常のwater-excitation画像より有意に高い正の値（p<0.05）を示した（Fig. 1）。

臨床応用した2症例とともに、3D water-excitation MTC画像に、脂肪抑制ブロトン強調FSE画像と同様に、関節液や関節軟骨より高信号を呈するコントラストを示し、関節軟骨の表面は明瞭に描出された（Fig. 2）。

Table 1 にブタ膝および有症状ボランティアの結果を示

<table>
<thead>
<tr>
<th>Structure</th>
<th>Porcine knee</th>
<th>Volunteer knee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MTC</td>
<td>no MTC</td>
</tr>
<tr>
<td>S/N</td>
<td>134±18.9</td>
<td>179±9.5</td>
</tr>
<tr>
<td>Cartilage</td>
<td>149±22.3</td>
<td>151±2.2</td>
</tr>
<tr>
<td>Saline (fuic)</td>
<td>35.2±4.1</td>
<td>35.2±4.1</td>
</tr>
<tr>
<td>Meniscus</td>
<td>18.1±3.71</td>
<td>18.1±3.71</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>5.2±1.4</td>
<td>5.2±1.4</td>
</tr>
<tr>
<td>Fat</td>
<td>-28.5±4.0</td>
<td>-28.5±4.0</td>
</tr>
<tr>
<td>C/N</td>
<td>10.5±8.1</td>
<td>10.5±8.1</td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. *p<0.05 (Wilcoxon signed-rank test)

Fig. 1 A 30-year-old male volunteer. Three-dimensional water-excitation images with (A) and without (B) on-resonance magnetization transfer contrast (MTC) pulse.
用であり、これらの点で従来用いていたMTC画像に劣っていた。しかし、本研究で用いたMTC画像の利点は、第一に、water-excitationを基本のクエスチオンに用いているため、脂肪の高信号による関節液一関節軟骨間コントラストの低下はなくなったことである。第二点として、潤い感し時間の短い撮影法であるため、3D画像が臨床検査時間でも十分可能で、関節骨の診断に必要な高い空間分解能のMRI画像が得られることである。またFSE法で認められるblurが3D水激发MTC画像に認められないという利点もある。診断例では、脂肪抑制プロトン密度強調FSE画像と同様な関節液一関節細胞間のコントラストが得られた。今まで報告されている関節軟骨の3D画像はT1強調画像であり、T2強調の3D画像の報告はない一。必要な軟骨の診断に有用とされている脂肪抑制FSE画像もMTC効果が加わっていることと考えると、本法のような脂肪信号が強化されていないMTC画像も同様の有用性を持つことが予想される。

本研究で、3D水激发MTC画像の観察時間が約7分と長いが、2回検査を行ったためである。そこで検査にすることにより、今回用いたSagittal像のほか、axial像またはcoronal像の3D水激发MTC画像も追加検査ができ、より正確な関節軟骨の診断が可能となると思われる。

結論

3D水激发MTC画像に、関節液を高信号とするいわゆるarthrogram-like effectの画像を、臨床応用可能な撮影時間内で得ることができ、今後の関節軟骨の機械法として有用となると考えられる。

文献

5) 吉岡 大、新津 守、福林 真：Magnetization Transfer Contrast(MTC)MR画像による脛関節軟骨の評価、臨床スポーツ医学 11: 423-427, 1994
6) 吉岡 大、中井敬明、遠藤純子、他：3Tesla MR装置を用いた脛関節MTC画像の初期検討. 日本磁気共鳴医学会雑誌 18: 410-416, 1998