3-5 gCubik+i によるバーチャル 3D アクアリウム：手に持てる 3D ディスプレイとテーブルトップディスプレイとの連携した自然なインタフェース

Roberto Lopez-Gulliver 吉田俊介 牧野真緒 矢野澄男 安藤広志
Roberto Lopez-Gulliver, YOSHIDA Shunsuke, MAKINO Mao, YANO Sumio, and ANDO Hiroshi

要旨
筆者らは、複数人での協調作業をサポートするコミュニケーションツールとして、箱型で、手に取ることができ、メガネなしの立体ディスプレイ、“gCubik”を発案し、開発した。このディスプレイは、正確な視点依存性の水平・垂直運動視差を伴う立体映像を多くのユーザーに提供する。

この論文では、現行の gCubik の 6 面を持つ試作機およびその設計コンセプトを提案する。最初に、以下技術的貢献の詳細を示す。a) 広い視野角度のインテグラルフォトグラフィ、b) インテグラルフォトグラフィのための実時間レンダリング、および c) アプリケーション開発のための実時間アニメーションサポートアーキテクチャである。最後に gCubik+i を、立体ディスプレイをテーブルトップディスプレイと自然に接続する、新しいインテラクティブなプラットフォームとして発案する。また、発案するプラットフォームの機能およびそのインタラクティブな視覚的特性を示し、バーチャル 3D アクアリウム・アプローチを例として紹介する。

We have proposed, and developed, the "gCubik", a cubic-shaped, graspable and glasses-free 3D display, as a communication tool to support group collaboration. The display provides multiple users with correct viewpoint-dependent full parallax 3D images.

This paper presents the current gCubik’s 6-face prototype and its design concept. First, details of the following technical contributions are presented: a) wide field-of-view Integral Photography; b) real-time rendering for integral photography; and c) real-time animation support architecture for application development. Finally, we proposed the gCubik+i as a new interactive platform that naturally interfaces a 3D display with a tabletop display. A virtual 3D aquarium application that showcases the proposed platform’s capabilities and its interactivity potential is presented.

[キーワード]
テーブルトップインタラクション、立体ディスプレイ、裸眼立体ディスプレイ、インテグラルフォトグラフィ、gCubik
Tabletop interaction, 3D display, Auto-stereoscopic display, Integral photography, gCubik

1 はじめに
自然な対面コミュニケーションを実現するには、視覚、嗅覚、触覚、および聴覚など、さまざまな感覚のデータの伝達に関する基礎的な研究が必要である[1]。対面での協調作業の場合、ユーザーはアイディアについての討議を後押しさせるため、従来のようにテーブル上の物を動かしにくいと感じることに傾る。
エンビュータ支援の協調作業では、小型の手持ち式入出力デバイスを使用して、インタラクティビティをテーブル上に追加し、手で触れられるバーチャルな物体を導入することにより、ユーザ同士の議論を促進できる。その際には、テーブルトップディスプレイと手で触れられるバーチャル物体との間の自然なインタフェースが必要となる。

ここでは、立体ディスプレイをテーブルトップディスプレイに自然に接続する新しいインタラクティブプラットフォームとして、gCubik+iを発案する。そのインタラクティブティの可能性を例示する、バーチャル3Dアクリリウム・アプリケーションを図1に示す。

立体ディスプレイとテーブルトップディスプレイ双方により実現される実時間インタラクションは、テーブルを問う多数のユーザが、静止した平面画像の魚を、テーブルから自分の手に自然に取り上げ、水平・垂直運動視差を伴うインタラクティブな立体映像の魚に変換して見ることを可能にする。手に取った後のディスプレイを指差したり他のユーザに手渡したりすることにより、討議をサポートする。また、実時間アニメーションによる立体の魚を共有および操作することができるとの新しいインタラクションパラダイムが、既存のテーブルトップディスプレイのアプリケーションに導入される。1)テーブル上の共有作業スペースとユーザの手の間で自然に切り替えを行うことにより、両方のインタラクション形式を効果的に組み合わせられること。さらに2)静止した平面画像から、実物を手にしているかのように見たり動かしたりできるインタラクティブ立体映像に切り替えること。

この論文では、まずgCubik+iプラットフォームを構成するgCubik立体ディスプレイおよびその技術的貢献の構成要素を説明する。a)広い視野角のインテグラルフォトグラフィ、b)インテグラルフォトグラフィのための実時間レンダリング、およびc)アプリケーション開発のための実時間アニメーションのサポートアーキテクチャである。

次いで、gCubik+iプラットフォームをベースとし、インタラクティブなバーチャル3Dアクリリウム・アプリケーションの実装を提示し、複数のユーザ間の協調作業をどのようにサポートするかを論じる。最後に、そのコンセプトデザイン、背景、そして既存の関連研究との相違点の概要を示す。

2 gCubik+iプラットフォーム

2.1 システム構成

gCubik+iプラットフォームの貢献点は、gCubik立体ディスプレイを強化し、ケース表面に直接触れることによる実時間インタラクティブを提供し、それをテーブルトップディスプレイに接続することである。またこのプラットフォームは、実時間レンダリングおよびアニメーションソフトウェアモジュールも提供し、容易なアプリケーション開発を可能にする。

図2にgCubik+i転作機の写真および図式化したシステムの概要を示す。

このシステムは、すべての面にタッチセンサの付いたgCubik立体ディスプレイ、赤外線（IR）センサ付きテーブルトップ32インチLCDディスプレイ、画像データおよびセンサ信号の入力および出力を処理する制御ボックス、画像レンダリングおよび信号処理のためのPCコンピュータで構成されている。
gCubik立体ディスプレイは、LCD用VGAケーブルおよびタッチセンサ用USBケーブルを保持するケーブルを使って、制御ボックスに接続されている。ケーブルの長さは約1mで、ユーザがディスプレイを動かし、操作するのに十分なゆとりを持つことができる。レギュラリング用PCは、VGA解像度の映像を6系統出力し、表示のため、映像分配機を通して実時間でgCubikへと送出する。テーブルトップディスプレイは、IRタッチセンサによって、インタラクション時の立体箱型ディスプレイとの接近が検出される。

続く項目では、gCubik＋iプラットフォームのハードウェアおよびソフトウェアの詳細について説明する。

2.2 gCubik：メガネなしの立体ディスプレイ

筆者らは、複数のユーザが特殊なメガネなしで立体映像を見たり共有したりするのを可能にする、手に取ることのできる箱型立体ディスプレイ、gCubik[2]を考案した。このディスプレイは、立体的な水平・垂直運動視差のある画像を提供し、正確な視点依存の視野を与え、どの方向からでも見ることができる。ユーザは、ディスプレイ内の立体的なバーチャル物体を、自分の手に取って動かすことが可能である。gCubikは、後ほど項目4.3で説明する、複数人で共有する立体ディスプレイの必要条件である "4つの g" を実現するよう設計されている。

このディスプレイは一辺が10cmの立方体で、重量はおよそ350gである。ディスプレイの各面は、LCDパネル、マイクロレンズアレイブレード、およびタッチセンサから構成されており、その配置を図3に示す。このマイクロレンズアレイにより、インテグラルフォトグラフィ (IP) [3][4]技術をベースとした裸眼立体観察が可能になる。

2.2.1 広い視野角度のIP

上述の箱型ディスプレイをどの方向からでも見ることができるようするには、各IPレンズは、図4の左部分に示されているように、光線群を少なくとも20°の角度で調整可能でなければならない。ここで、ディスプレイの3面を同時に観察する場合に、最も困難な状況が生じる。観察距離をDとすると、視点は \(e = \frac{D}{\sqrt{2}} \) (40) となる。また1面の大きさをB、法線n=(0, 0, 1)を持つ上面Fの中心を \(e = (0, 0, \frac{D}{2}) \) とするとき、上記 \(e \) は、観察のベクトル \(v = e - c \) と法線n間の角度となる。 \(D = 400 \text{mm} \) および \(B = 72 \text{mm} \) なので、\(e \) は59.2度となる。そのため、開発する箱型ディスプレイは、最低でも視野角度120度のIPレンズを必要とする。

IPで一般に使用されるレンズアレイは、図4の右に示したとおり、数個の平凸レンズをピッチセイズ p で隙間なく並べた平面アレイとみなすことができる。市販のIPレンズでは、視野角度20度が40度にすぎないため、今回の目的には適合しな
い。
そのため、筆者らは視野角度120度のIPレンズアレイを設計し実装した。各IPレンズは両凸レンズであり、図3に示したとおり、左のLCDの前に配列される。IPレンズは、黒色に塗装された1.12mm厚のアルミニウムプレートに開けられた穴の中に装着される。各プレートに1065個ずつのレンズを取り付ける。穴の径2.0mmで、最適充填するためにパッチの果状の並びに配置されている。IPレンズ間の距離は、今回の実験で使用するLCDディスプレイの18×18ピクセルの面積を覆うようレンズを設置することにより、2.025mmに固定されている。IPの焦点距離f、有効口径および他のパラメータは画質のために最適化されており、LCDのガラスとフィルムも計算に含められている。

2.2.2 抵抗膜方式タッチセンサ

gCubikの各面の表面には、タッチセンサが追加されており、図3に示すとおり、直接触れることによるインタラクティブティが備わっている。ここでは市販の選択肢の中から、静電容量方式のものではなく、抵抗膜方式のセンサを選ぶ。抵抗膜方式のセンサは、ユーザが直接のインタラクションのため意図的に指の爪を使って初めてタッチイベントを始動させるためである。一方、静電容量方式のセンサは、ユーザが片手でディスプレイを持たずタッチイベントを始動させてしまう。

抵抗膜方式タッチセンサは、非常に薄い2層の金属導電層を持つ。これらの導電層は、タッチセンサの透過率に影響を及ぼす。通常約80%に減光されるため、IP映像の輝度を若干減衰させる。またこれらの層は、光をわずかに拡散することが
あり、IP 映像の両眼立体視に影響を及ぼす可能性が高い。結果として得られる IP 映像の定量的測定および必要な修正は、今後の課題とした。

2.3 IP のための実時間レンダリング
レンダリングアルゴリズムには、フレームバッファオブジェクト (FBO) を用いた OpenGL9 オプスクリーンレンダリングを使用する。このアルゴリズムは、文献10におけるアルゴリズム、および文献11からのアイデアの強化版である。FBO は、メインメモリからビデオメモリへの転送とコンテキストスイッチを回避し、処理性能を向上させる。同時に、スクリーンの大きさはフレームバッファオブジェクトの大きさに制限されない。今回の実装では、立方体の 6 つの面に、(640×2) × (480×2) ピクセル大の FBO を確保し、アップサンプリングしてエイリアシングによるアーチファクトを回避する。次いで、立体シーンを上述の FBO にレンダリングし、1065 個の各 IP レンズの位置から、視野角度 120 度の仮想カメラを使って、各要素画像に対応する (18×2) × (18×2) ピクセルの表示域に描画する。その際、ステンシルマスクを使用し、隣接するレンズの位置に伴う表示域のオーバーラップを防止する。その後は、ダウサンプルした 640×480 ピクセルの FBO にストアされたレンダリング結果を方形ポリゴンにテクスチャとして貼り付け、このウィンドウシステムの提供するフレームバッファ上に描画すればよい。試作機のレンズアレイに含まれる 1 面当たり 1065 の IP レンズ数により、ディスプレイの立体解像度は約 36×30 立体ドットに制限される。

図 5 の左部分に、箱型ディスプレイの 6 つの面に対応する、立体モデルおよび 6 つの IP レンズアレイの相対的な位置を示す。右のドット群は、レンズアレイ内の各レンズの位置を表す。同じ図の右部分に示されたのは、箱型ディスプレイの前面に描画された IP 映像である。補入拡大図には、生成された要素画像の細部が示されている。今回、作成機では LCD ディスプレイの前面が上下逆さになっているため、要素画像も転倒している。図 6 に、gCubik に表示した立体フィーバーの同時多面観察を示す。この gCubik は、ここで説明した今回発案する広視野角度 IP レンズを使用している。

アルゴリズム 1 に発案したアルゴリズムを示す。初期化の間、各スクリーンに対して、カラーバッファおよび深さバッファを伴う FBO を画像として割り当て、この FBO で要素画像が生成される。レンダリングアレイは、ディスプレイの全スクリーンおよび各スクリーンの全要素レンズに対し、作成し、各レンズ位置に仮想カメラを移動させる。次いで、このカメラを使用した立体シーンのレンダリングによって、IP 要素画像が生成される。

FBO 上のレンダリング対象領域の位置を設定するには、特別な注意、すなわち、ビューポートを適切に設定することが必要である。また、他の要素画像に上書きするのを避けるため、シーケンスも求められる。要素画像の形が矩形でない場合、要素画像のオーバーラップを回避するため、
図6 インテグラルフォトグラフィ（ティーポット）の同時多面観察

アルゴリズム1 FBOを用いたIP映像のレンダリングアルゴリズム

Init Program
Initialize 3D Scene and sensors ## initGL()
Initialize FBO for each screen
...
Rendering Loop
update animation and sensors ## tickGL()
for each screen in the cube display
bind screen’s FBO as rendering target
for each elemental lens in the screen
move camera to lens’ position
lookat inside the cube
set camera projection to perspective
set FBO’s target rendering area ...
... according to lens position
set circular/hexagonal mask
render 3D scene to FBO ## drawGL()
release screen’s FBO as rendering target
down-sample IP image to screen size
display IP image on screen
cleanup 3D scene and sensors ## closeGL()
End

ステンシルマスクを使用しなければならない。各画面のIP映像が生成された後、FBOにそれらの画像が収められるが、アルゴリズムは画面のフレームバッファ上にFBOをテクスチャ処理した方形ポリゴンを描画する。その際、テクスチャマッピングによる、必要に応じたテクスチャ縮小機能、アンチエイリアシングを使用し、IP映像をダウンサンプルする。その後、レンダリンググループは上述の各段階を停止されるまで繰り返す。

2.3.1 性能結果
今回のテストでは、複数のマテリアルが設定され、テクスチャが付与されていない、3500頂点、
図7 発案したアルゴリズムの性能

6500トライアングルのシェーディングされた立体ティーカップモデルの表示において、2.66 GHzのIntel Core2 Quad CPUと、NVIDIA GeForce 8800 GTグラフィックスカード1枚を使用して、最大12fps（1秒当たり12フレーム）を達成できた。

さまざまな数のポリゴンを伴う立体モデルに対する、発案したアルゴリズムの性能を図7に示す。

2.3.2 エイヤリアシングに関する考察

コンピュータで生成したIPレンダリングアルゴリズムについては、多くの場合、エイヤリアシングの問題を考慮する必要がある。エイヤリアシングは通常、要素画像の解像度が低いことに起因する。解決策の1つは、要素画像をより高い解像度でレンダリングした後、表示された画像を、アンチエイヤリアシングフィルタを使ってダウンサンプリングすることである。だが、IP映像に含まれる個々のピクセルすべてが有効な場合、生じる連射視差はアンチエイヤリアシング後も失われることに留意すべきである。

今回の実験では、拡大係数2（mf=2）を使用したため、まず各要素画像を36×36ピクセルでレンダリングし、次いでパイキュービックフィルタを使って最終的に18×18ピクセルの解像度までダウンサンプリングする。

図8 に、今回得ることのできたアンチエイヤリアシング効果の一部を示す。画像(a)は、36×36ピクセルの高解像度でレンダリングされた要素画像である。画像(b)には、18×18ピクセルでレンダリングされた要素画像を示した。丸で囲った部分のぎざぎざの辺縁（エイヤリアシング）に注目できる。この部分が、最終的なgCubikディスプレイでの見た目に、オリジナルの形状とは異なる立体オブジェクトの外観を決定付ける。画像(c)は、画像(a)のダウンサンプリング後に表示された18×18ピクセルの要素画像である。ぎざぎざの辺縁が滑らかになり、ディスプレイに表示される再構成された立体映像是、オリジナルの形状により近いように見える。
アンチエイリアシングは、使用可能な VRAM により制限される FBO のリソースを余分に使用することに加えて、ダウンサンプリングのための余分な演算処理も必要とする。ダウンサンプリングまたはアップサンプリングのアルゴリズムが、多くの OpenGL のドライバでは相当に最適化されているにもかかわらず、その実用性能は視覚的影響する場合がある。

さらに、異なる拡大係数 4, 8, および 16 を要素画像のレンダリングに使用して、gCubik に表示される最終的な立体 IP 映像の外観に影響するかどうかを試みた。その結果、最初に使用した mf = 2 に対する大幅な相違は見られなかった。実際に mf = 4, 8, 16 の各画像の mf = 2 の画対する類似性を定量化したが、ほとんど差がないことがわかった。2 つの画像の残り 2 乘平均平方根 (RMS) を使用し、その差を正規化して、黒い画像を参照画像と比較した場合に類似性が 0, 2 つの画像が同一の場合には類似性が 100% なるようにした。mf = 4, 8, 16 の画像はほぼ同等であり、mf = 2 の画像に対して約 98% の類似性を示した。従って、mf = 2 が今回の目的に十分かかなっていることが確認された。

2.4 実時間アニメーションのソフトウェアアーキテクチャ

前述した IP のための実時間レンダリングアルゴリズムにより、gCubik 立体ディスプレイに、実時間アニメーションおよびインタラクティビティを効果的に提供することが可能になる。

gCubik 立体ディスプレイのためのアプリケーション開発を容易にするため、図 9 に示すとおり、プラグラインアーキテクチャを実装した。また前述した IP レンダリングアルゴリズムを、OpenGL グラフィックスライブラリ [5] の最も上位のモジュールに要約した。その結果、アプリケーション開発者は、標準 OpenGL プラグライン、立体モデルデータまたは立体モデルアニメーションのいずれかを通じて、自分の必要および専門技術に応じ、実時間コンテンツを追加する柔軟性を得る。それらすべては IP レンダリングモジュールに送達され、gCubik ディスプレイのために必要な画像が生成される。

標準 OpenGL プラグラインは、経験豊富なプログラムで OpenGL コマンドを直接出荷して、アプリケーションのパーソナルな立体世界、その中の立体オブジェクトおよびその動作を記録することを可能にする。開発者の API は、これもアルゴリズム 1 に示されているが、4 つの機能から成る。"initGL" および "closeGL" はアプリケーションの処理中一度のみ呼び出され、主にグラフィックスコンテキストの初期化または消去、立体モデルデータの読み込み、および必要な他のセンサの初期化に使用される。"tickGL" は IP レンダリング処理のループごとに一度呼び出され、主にパーソナルな位置および動作をセンサデータの入力に応じて更新するために使用される。"drawGL" は、立体シーンの要素画像が生成されることに、IPレンズの数と同じ回数、gCubik ディスプレイの場合は 6 x 1065 回呼び出され、そのため、どのような性能の最適化でも、これらの機能の最適化から始まる必要がある。

立体オブジェクトを異なる形式で容易に読み込み表示するため、立体モデルデータモジュールを使用できる。現在の実装では、Alias Wavefront OBJ 形式のみをサポートするが、他の形式も容易に追加可能である。グラフィックスデザインはこのモジュールを使って、gCubik ディスプレイに自分の立体オブジェクトを容易に表示することができる。

立体アニメーションモジュールにより、グラフィックスデザインおよび経験豊富な立体アニメータは、自分の選ぶ立体ソフトウェアでアニメーションを開発することができる。このモジュールは標準で Quake MD2 動画形式ファイルをサポートする。
3 実装と考察

3.1 パーチャル3Dアクアリウム・アプリケーション

gCubik+プラットフォームの本来の性能を具体的に示すため、インタクティブなパーキュラル3Dアクアリウムを、コンセプト応用の実証例として開発した。ユーザは、インタクティブな立体の魚を同時に観察し、共有し、他の人に手渡すことができ、結果として複数人での協調作業をよりよく支持することが可能になる。このアプリケーションは、文献[9]で説明されている類似の製品を、複数人で共有するインタクティブな立体映像の追加によって強化する。

手に取ることのできる箱型立体ディスプレイgCubikを使って、ユーザは魚の静止平面画像をテーブル上のデジタル絵本から自然に取り上げ、立体の魚に変換して観察することができる。ディスプレイ上の立体の魚は、実時間で操作し、動かすことが可能である。画像はどの方向からでも、特殊なメガネなしで立体的に観察できる。

ディスプレイの側面で指をドラッグさせて、ユーザはさまざまな観察角度で魚を調査できる。また箱の面を繰り返し叩いて魚を追い払いこともできる。魚をテープル上の平面ディジタルブックに戻すには、元の場所にgCubikで触れただけでよい。このインタラクションにおける各段階の流れを図10に示す。現在の実装では、テーブル上に6匹の魚が表示される。

3.2 ユーザのインタラクション経験

gCubik+プラットフォームおよびそのパーキュラル3Dアクアリウム・アプリケーションを、いくつかの大規模な会場で展示した[9][10]。以下の検討は、前述の展示中[9]の、システムと対話操作するユーザによるビデオ録画された会合の分析に基づいている。1日8時間で4日間の展示中、1000人を超えるユーザがシステムを利用した。

3.2.1 複数人での共有

図11に、システムを対話操作しているユーザの典型的な様子を示す。筆者らは、4.2の項目で検討した複数人での共有行動を繰り返し観察した。つまり、1) テーブルの周囲に集まり、2) 同時に指差し、3) より近くで観察できるように他人のディスプレイを手渡し、4) ディスプレイから他のユーザのコメントと注意を切り替えるときに自然に目を合わせる、といった行動である。

テーブルの周囲に集まり1)、同時に指差すこと2)、は、立体映像で、またどの方向からでも正確
な視野で、どのような視点でも展示されたディスプレイを観察できる場合に可能となる。ユーザは実物を手に持ち、見ているように感じるだろう。

より近くで観察できるようディスプレイを他のユーザに手渡し (3)、自然に目を合わせること (4) は、展示されたディスプレイが小型で手に取ることのできるので可能となった。従来のテーブルトップディスプレイのように、共有する平面スクリーンをユーザが目を凝らして見ることで、gCubikのユーザは、観察のためにディスプレイを引き寄せたり、必要であれば他の人に手渡したりする。

gCubik+iプラットフォームは、ユーザ間の話者交換がインタラクションの流れを妨げるこのような状況での協調作業に申し分なく適している。このプラットフォームは、上述の複数人での共働作業の 4 つの要件を効果的に統合している。

3.2.2 平面/立体ディスプレイの自然なインタフェース

ほとんどのユーザのコメントは、立体ディスプレイとテーブルトップディスプレイのインタフェースが、どれほど自然で、直接的および直観的かという点に関係している。gCubikを使ってテーブルから魚を取り出すことで、実際に釣りを楽しんでいるようにユーザが感じたり、gCubikを使いつくしたときに魚が本当に飛び出てくるように感じたりすることがある。人とコンピュータ間のインタラクションを実際に体験したユーザでも、テーブル上の IR タッチセンサが唯一のセンサで、gCubikに特別なセンサは付いていないことを理解するまでに、いくらか時間がかかった。これはインタラクションに含まれる以下要素のためと考えられる。gCubikが唯一の可動式取り出しデバイスであること。テーブルから gCubikに魚を取り出し、また元に戻す手の動きが自然であること。さらに、魚を単にコピーするのではなく、効果的にテーブルから魚を削除して gCubikディスプレイに転送することによって、ユーザの注意を gCubikにそらす [2]。これにより、後の解説 43で検討する gCubik+iプラットフォームのコンセプトへの期待が強化された。テーブル上のバーはディスプレイ全体を取り出したり戻したりするための自然なデバイスとしての、手に取ることのできる立体ディスプレイを使用するコンセプトである。

4 デザインコンセプト

4.1 複数人で共有する立体ディスプレイ（4g+i）

複数人での討議の一部として自然に触れるよう、実物体の置き換えになるツールを gCubik は目指している。今回試作した gCubik は、次の概念で実装を試みた。g1) 複数人での共有：複数のユーザが、自分の位置にかかわらず正確な視野で同時に観察すること。g2) 手に取ることが可能：容易に片手で持ち、他の人に手渡せること。g3) メガネなし：普通メガネなしで立体観察できること。g4) 物体を取り込んだ展示ケース：立体的な実物体が透明なケースの内側にあるような印象を与えうること。さらに i) インタラクティブ：手または指の動き用で、自然な実時間がインタラクションが可能であること。

図 12 は、そのような立体ディスプレイが、討議で共有する物理を提供し、複数のユーザが自分の位置にかかわらず同時にディスプレイを観察できるようにすることを示している。サイズが小さいので、物理を容易に手渡すことができるに加えて、討議の間、ユーザ間で自然な目的の接触を保つことも可能である。

4.2 背景：テーブルトップでの協調作業

コンピュータ支援協調作業 (CSCW) および人とコンピュータ間のインタラクション (HCI) の分野
図12 複数人で共有する立体ディスプレイの特徴となる要件

a）ユーザの位置にかかわらず同時に観察できる。b）物体を自然に指差し、容易に手渡すことができる。c）自然に目を合わせることができる。

で、複数の人がテーブルを囲んで議論し協調作業する伝統的な方法を円滑にすると共に強化する仕方について、多くの研究が行われてきた。ここで検討を、a) テンジナルユーザインタフェース（TUI）、b) 複数のユーザによるテーブルトップインタラクション、およびc) 立体（3D）ディスプレイの領域に絞る。

TUI（a）は、デジタル情報の表示または制御手段としての物理的な人工物の使用により、オブジェクトを自然に動かす今回開発した技術の活用を確実にする。実物体は、ディスプレイとデータのビットに対するインタフェースのどちらにもなるため、インタラクションを直接的および自動的なものとし、“直接関与”を可能にする（12）。例えば、小さな複数の立体を、立体モデルデータをコンピュータに入力し、立体インタラクションとしての構造を組み立てること（13）、または本体の物体に触れ、さまざまな行為を入力し、バーチャル3D物体を生成することなどが挙げられる（15）。

テーブルトップインタラクティブディスプレイ（b）は、一般に複数人での協調作業をサポートするために使用される。特に関心の的となるのは、複数のユーザが、素手でディスプレイに触れることにより、同時にデジタル情報と対話操作することを可能にする技術である（16）（18）。複数のディスプレイを接続し、簡潔で直接的なビックアンドドロップのメカニズムを用いて、平面ディスプレイ間で転送することにより、複数のユーザがバーチャル物体を共有できるようにする多くの技術を、文献（19）26）に見出すことができる。

立体ディスプレイ（c）は、インタラクティブシステムの視覚的体験の実現を保証する（21）。特殊なメガネを使用する立体ディスプレイ（22）から、裸眼立体ディスプレイやボリュームディスプレイまで、さまざまな実例がある（23）（25）。しかしながら、これらは重量またはサイズが大きいので、直接的操作の機械のために、自由に動かすことも southwestern impossible をできない。

またインテグレーテッドフォトグラフィ（IP）は、立体ディスプレイのために用いられる技術の1つである（3）。マイクロレンズアレイは、現実のシーンに含まれる複数の視点依存な視覚を記録および表示するために使用される。特殊なメガネは必要ない。両眼立体視および水平・垂直運動視差を伴う技術が容易に使用可能である。IPの動画に対する実験の拡張は、医学的応用（26・27）および実用でライフストーミングのために発案されてきた（27・28）。これらのシステムは強化された視野角を備えているが、依然として単一スクリーンでの正面からの観察のために設計されている。

4.3 テーブルトップと立体ディスプレイ間の自然なインタフェース

次のシナリオを考えてみたい。複数の人が携帯電話の新しいモデルについて討議している。状況が許すなら、誰かがすぐにでも自分の携帯電話をポケットから取り出して、テーブルの上に置き、新しいモデルの特徴を説明しながら、その携帯電話のいくつかの部分を指差し始めることだろう。
その人は携帯電話を手にとって、より近くで観察できるよう、他の人に手渡すかもしれない。こうした方法によって、説明はより具体的になり、話題に関する参加者の理解も容易になる。このシナリオは、複数人での対面による協調作業において、ごくあたりがふれたものである。

gCubik+i プラットフォームは、立体ディスプレイをテーブルトップディスプレイに自然に接続することにより、複数のユーザが立体映像を自然に共有し対話操作することを可能にし、複数人による協調作業をサポートすることを目的とする。この立体ディスプレイが実物体をインクラクティブなバーチャル物体に置き換える一方、テーブルトップディスプレイは、さまざまなバーチャル物体の中から選択することを可能にする。図 12 に、今回のデザインコンセプトを示すインタラクションシナリオを示す。

インタラクションは、さまざまな物体をそのまま手でつかんでテーブルから取り出し、討議のため複数人の中心に持ってくるかのように、自然でなければならない。理想的には、立体ディスプレイが表示用デバイスとして機能するだけではなく、テーブルトップディスプレイからバーチャル物体を取り出したり戻したりするためのデバイスとしても機能する必要がある。このように、共有するテーブル上の作業スペースとユーザの手との間で滑らかに切り替えを行うことにより、両者のインタラクション形式を効果的に組み合わせ、協調作業を充実させることができる。

図 13 に、立体ディスプレイそのものを、テーブル上のバーチャル物体を取り出したり戻したりするためのデバイスとして用いるべきことを示した。

4.4 関連研究
この項目では、今回発案するインタラクティブプラットフォームに深く関連した既存研究を振り返り、検討する。ここでは主に、手に取ることのできる立体ディスプレイと、複数のユーザで使用するテーブルトップシステムにフォーカスする。

これまでにも、手に取ることができ、インタクティブな箱型立体ディスプレイをいくつか発案した。だが、あるものは立体効果を得るために特殊なメガネが必要とし[22]、前述の g3 の特徴に欠けていた。他の発案されたディスプレイ[29]-[32]は特殊なメガネが必要としないが、3D の目覚運動視差を得るためにユーザの頭を追跡しなければならず、単一ユーザを前提としていた。これらのディスプレイは、前述の g1 および g3 を同時に満たすことができない。

複数のユーザ向けの機能を持つ、いくつかのインタクティブテーブルトップディスプレイが発案されてきた。例えば、文献[33]で言及された製品は、ユーザの頭を追跡することにより、最大 4 名のユーザが、同時に立体運動視差を伴う立体映像を観察および共有することを可能にした。この製品は、立体ディスプレイと、中央に穴を開けたディスプレイマスクで構成されている。しかしながら、ユーザは特殊なメガネをかける必要がある。さらに、ユーザはバーチャル物体を自然に指差すことはできるが、直接動かすために手に取ることができない。このシステムは前述の g2 および g3 に欠けている。また文献[34]では、いくつか関連したシステムが提案されており、特に設計された光学スクリーンを使用して、複数のユーザにそれぞれの視点を持つ画像を提供する。この製品には、インタクティブな小型の実物体が含まれており、さまざまな物体を表示する小型スクリーンとして機能する。ところが現在の実装ではサポートされているのは、固定位置での 2 人のユーザのみである。このシステムには、前述の項目で扱われた要件すべてが実装されているが、ユーザの数が制限されており g1、オブジェクトの操作はテーブ
ルの上記のもので行えるため、2、部分的にすぎない。また、デテーブルトップ装置上でインタラクティブディスプレイを実現する、IPを使用したメガネなしの立体ディスプレイが文献25で紹介されている。複数のユーザが固定で水平・垂直運動視差を伴う表示を見ることができ、すべてのインタラクションは、テーブルの上面で単一のIPスクリーンを通じてのみ生じる。

今回発案したgCubik+iプラットフォームは、これまでに検討した"4g+i"の要件すべての効果的な統合を確実にする。

5 おわりに

本論文では、立体ディスプレイをテーブルトップディスプレイに自然に接続する、複数での協調作業に適した、新しいインタラクティブプラットフォームとして、gCubik+iを提案した。また、gCubik+iプラットフォームのデザインコンセプトに加えて、このプラットフォームに基づく、インタラクティブなバーチャル3Dアクリリウム・アプリケーションの実装に関する概要を示した。このシステムと対話を操作したユーザとの予備実験では、インタラクションは自然であり直観的で、複数のユーザが立体的なバーチャル物体を実物体として観察および操作できることにより、複数人での協調作業がサポートされることが示唆された。

筆者らは、gCubik+iプラットフォームを使用して、立体映像情報の共有で協調作業をサポートできる分野で、複数ユーザ用のアプリケーションを開発することを計画している。開発可能な多くのアプリケーションには、ゲーム、エデュテイメントやネットショッピング広告も含まれる。また、gCubik+iプラットフォームの使用によって発展する新しいインタラクションのバーチャルに関連した研究と共に、他のタイプのインタラクションと比較したその効果性の評価実験を実施することに主な関心を持っている。さらに、gCubik+iとレンダリング用PC間に無線画像転送システムを統合し、自由な操作を容易にする計画中である。また、複数のgCubikによるインタラクションのパラダイムについての研究にも関心を抱いている。

参考文献

